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A b s t . r a c t  

The process of gradually settling a combinatorial system 
into configurations of globally minimum energy has variously 
been called simulated annealing, statistical cooling, and so 
on. Very large combinatorial optimization problems have 
been solved using this technique. It has also been shown 
.that this method is effective in obtaining close-to-optimal 
solutions for problems known to be NP complete. 

The purpose of this paper is to illustrate an efficient version 
of the simulated annealing method as applied to a variant 
of the bin-packing problem. The computational complexity 
of the method is linear in input size similar to various well- 
known heuristic methods for the problem. The solutions 
obtained, however, are much better than any of the heuristic 
methods. The particular variant of the bin-packing problem 
we consider has several practical applications such as static 
task allocation in process scheduling and batch processing. 

Introduction 

T h e  B i n - P a c k i n g  P r o b l e m  

The classical definition of the bin-packing problem involves 
'packing a list of items of (possibly different) sizes into the 
smallest number of bins, each of which has a given maximum 
capacity. Coffman et al. [2] is a good survey of several 
approximation algorithms for bin-packing that yield quick 
sub-optimal solutions. 

The variant of the classical problem we solve, deals with a 
fixed number of bins each with an unlimited capacity and 
the objective is to pack the items into these bins so that each 
bin has about  the same total allocation. [n other words, we 
are interested in the most equable distribution of items to 
bins. Our problem differs from the classical problem in the 
following two ways: 

1. T h e  b i n  s izes  a re  n o t  c o n s t r a i n e d .  The ratio- 
nale behind this particular variation of the problem is 
the fact that  this model is appropriate in certain real- 
world situations. For example, in a batch processing 
environment, it is sometimes necessary to complete 
a fixe~ number of tasks of (possibly) different sizes, 
given a fixed number-of processors. The primary aim 
here is to find an allocation that minimizes the total 
idle time. 
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2. T h e  t o t a l  n u m b e r  o f  b i n s  is f ixed.  This varia- 
tion is a direct consequence of variation 1 above. It is 
reasonable to expect, in a practical situation, that  the 
availability of physical resources is bounded in some 
way. The classical problem places no restrictions on 
the number of bins. 

In the remainder of this paper we will refer to our variant of 
the problem as the bin.packingproblem for brevity. 

S i m u l a t e d  A n n e a l i n g  

Simulated Annealing, a general purpose combinatorial opti- 
mization technique, was first proposed by Kirkpatrick et al. 
[8] in 1983. This technique is a generalization of the Monte 
Carlo method developed earlier by Metropolis et al. [10] 
and has been successfully used to solve optimization prob- 
lems such as the Traveling Salesman Problem [3] and the 
Wire Length Minimization Problem in VLSI circuits [9]. 

In this technique, the solution space of the combinatorial sys- 
tem being optimized is explored in a controlled fashion using 
a control parameter (the analogue of the temperature in a 
physical system), so that  cpnfigurations with successively 
better measures for the objective function are obtained. 

The primary motivation for applying simulated annealing to 
the bin-packing problem is the observation that annealing 
yields remarkably good solutions to several combinatorial 
optimization problems known to be NP-Complete 1 

The various approaches that  a t t empt  to remedy the massive 
computational time required by the annealing method, may 
be grouped into three broad categories - -  parallel annealing 
techniques [1], efficient annealing schedules [5, 7, 9, 11] and 
controlled move generation methods. This last category of 
methods is usually problem-instance dependent and is not 
widely applicable to combinatorial optimization. The more 
popular techniques in the literature employ efficient anneal- 
ing schedules and this paper describes one such schedule. 

Problem Formulation 

We define an instance of the bin-packing problem a~ consist- 
ing of 

1. M bins, each of which has an unlimited capacity 

2. N i t e m s  (sizes) h , . . . , ~ r ; 0 < t i  < t  . . . .  1 < i <  N 

3. An objective function (also refered to as the cost or 
the energy function) defined as 

M 
c({a~}) = ~ ( B ~  - T) +" (1) 

3=1 

where B e is the sum of the sizes of the items allo- 
cated to the j ' t h  bin and {ai } is an allocation sequence 

1Garey et al. [4] is an excellent repositocy of information about 
NP-Completeness 
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an,a2 . . . .  ,aN; 1 < al _< M .  An allocation z.,.quence 
determines which bin each item is allocated to. Thus, 
each allocation sequence represents a feasible solution 
to the problem. The resulting distribution of items to 
bins i.~ also called a configuration (state) of t)~e prob- 
lem (system).  T is t h e  total allocation at each bin 
that  minimizes the cost function. Thus, 

N 
1 ; (2) 

howewL a particular instance of the problem may not 
render itself to such a perfect allocation scheme. 

A n n e a l i n g  Schedule  

The annealing schedule is described by quantitative choices 
for the three param, eters - -  the starting value of the tern- 
perature Too, the stopping value of the temperature To, and 
the decrement function ~ ( t )  which determines the profile of 
the temperature from start  to end of the annealing process. 

During simulation, we first carry out an exploratory search 
of the configuration space where we assume that  the tem- 
perature is infinite and accept each generated configuration. 
From this data,  we obtain fundamental  statistical quantities 
about the system. In particular, we are interested in the av- 
erage value of the cost < C(T)  > and the s tandard deviation 
o- of the the density of states dis'tribution. 

The following lemmafoUows directly from the problem for- 
mulation. 

L e m m a  1 The magnitude ol the objective funct ion  does not 
exceed M ( M  - 1)~ 2 

The maximum value for th~ objective function is obtained by 
allocating all the items in the item list to one bin and leaving 
the other M - 1 bins empty. Such an allocation yields an 
objective function value of ( M T  - T) 2 + (M - 1)~ 2 which 

is the same as M ( M  - 1)~ 2. It is easy to see that  no other 
allocation can yield a larger value for the objective function 
since moving any item from the bin to which it is currently 
allocated, would decrease the objective function value both 
at the bin to which it is currently allocated and at the bin 
to which it is being moved. 

The goal of the problem is the identification of an allocation 
sequence {al } such that  

v{~,}' c({~,}) ~ c({~,}') (3) 

Thus, {ai }- denotes an allocation sequence that yields a 
global minimum value for the objective function. 

A n n e a l i n g  A l g o r i t h m  

The algorithm for the bin-packing problem is shown in figure 
1. The algorithm starts with a high value for the tempera- 
ture parameter.  The temperature is then decreased gradu- 
ally until a small enough value for the temperature is reached 
when the algorithm is terminated. At each temperature,  the 
system is perturbed several times. 

The algorithm first allocates items to bins randc~mly. To 
obtain a new state from the current state, the syst~:m is per- 
turbed by selecting one of the two move generatior: methods 
described later. The value of the objective function corre- 
sponding to this new state is calculated. 

The Metropolis [10] criterion is then applied and the algo- 
rithm accepts or rejects the new state. If ~ C  < 0. ~he new 
state is accepted. If &C > 0 then the new state is accepted 
with a probability 

- ~ 4 " e ( ~ c ) = e  '~ ( )  

T in equation 4 is the control parameter analogo:z,_ to the 
temperature in a physical system. When the temperature 
reaches a low enough value, To, the algorithm terminates and 
the most recently accepted configuration is the best solution 
found. 

H i g h  T e m p e r a t u r e  R e g i m e .  

This region of the annealing curve (and the corresponding 
behavior of the system) is marked by the acceptance of most 
generated states: The value of the temperature parameter  
is so high that  the Metropolis criterion is always satisfied. 
Thus, the average energy in this regime is very high. Just 
how high must the starting temperature be, for a good an- 
nealing schedule, is usually determined by monitoring the 
acceptance ratio at each temperature. While this serves as 
a problem-independent method of fixing the starting value 
of the temperature,  often it yields a temperature value that  
is too high. 

Lemma 1 gives the theoretical maximum for the objective 
function. If the control parameter is just high enough to 
accept the configuration with this maximum energy, then it 
follows that  the temperature is high enough to accept any 
configuration. This is the technique we use to arrive at the 
high temperature limit for the schedule. 

If tk is the item with the largest size in the item list, then 
the configuration that allocates tk alone to a bin and all 
the other items to another bin has the property that it is 
within one move 2 of the maximum energy configuration. 
The energy of this configuration is given by 

c = ( i~ - - tk - -Y)2+(M--2 )T  2+(tk-~)2 
= M ( M - 1 ) T  2 - 2 t k  ( M T - t k )  (5) 

and the difference in energy, AC,  between this configura- 
tion and the maximum energy configuration is given (from 
Lemma 1) by ~ C  = 2 tk ( M  T -  tk).  

An uphill move from a configuration with energy given by 
equation 5 will be accepted only if e - - ~  _< 1 / N  (only one 
out of N possible moves results in the maximum energy con- 
figuration). This gives the high temperature condition as 

Too = 2 tk (M ~ -  tk) (6) 
In(N)  

The annealing algorithm yielded good annealing curves with 
this high temperature condition. Based on the condition 
proposed by White [11], Huang et al. [7] suggest using a 
high temperature limit of the form Too = t¢ o" where er is the 
standard deviation of the cost distribution (obtainable from 
the density of states graph) and t¢ may be calculated assum- 
ing a Gaussian cost distribution and selecting a temperature 
that is high enough to accept a configuration that  is within a 
few standard deviations from the current configuration with 
an arbitrarily fixed probability. 

2 moves are described in a later section 
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L o w  T e m p e r a t u r e  R e g i m e  

Several annealing schedules in the literature recommend that 
the annealing process be stopped when there is no apprecia- 
ble change in the quality of the solution across a few chains 
of computation.  While, in general, this is a good guideline, it 
is possible tha t  the problem instance has several degenerate 
low energy states. In such a situation, at low temperatures, 
a configuration might repeat a few times in succession with- 
out. necessarily being the global minimum. Our stopping 
crioterion takes into account the lowest temperature scale of 
the system. 

The smallest change in the objective function can be esti- 
mated easily. The smallest value of the objective function is 
zero (theoretically). Let ti be an item in the item list with 
the smallest size z. Thus, the smallest AC for any perturba- 
tion will involve moving this item from the bin to which it 
is allocated (in a perfect allocation), to any other bin. This 
yields ~C = 2tl 2. Consider an allocation where M - 2 bins 
each have a. total allocation_ of T and the remaining two bins 
have a total allocation of T - ti and T + ti. Of a total of N 
possible moves at this configuration, only one goes downhill 
to the perfect allocation. Thus, it must be the case that 

- / ~ . C  
e'-'~-- _< 1 IN  4. This gives us the low temperature limit as 

2ti 2 
To = in(N) (7) 

Of course, a smaller choice for To will work just as good 
though this would waste computational  time since no new 
configurations would be accepted once the perfect nucleation 
is reached and the temperature is not higher than the limit 
given by equation 7. 

M o v e  G e n e r a t i o n  

A move in the anI/ealing process denotes the generation of 
a candidate configuration for the system. This new config- 
uration may or may not be accepted as the next state of 
the system depending upon the control parameter and the 
random number ~ in the Metropolis criterion. Typically, a 
move is generated by modifying the current state of the sys- 
tem in some way. During the actual simulation, we have 
noticed that  two different types of moves are effective. 

1. Relocation of a single randomly selected item from the 
bin to which it is currently allocated to a randomly 
selected bin 

2. Randomly selecting two items currently allocated to 
two different bins and exchanging their positions 

At high temperatures,  e -  ,~c "2 1 and state changes involv- 
ing relocation of items with large sizes are likely to be ac- 
cepted. At low temperatures,  e - - ~  q- _~ 0 and generated 
configurations are likely to be accepted only when they lead 
to a smaller value for the objective function. 

T e m p e r a t u r e  D e c r e m e n t  

The rate at which the control parameter is varied, has a pro- 
found impact on the quality of the final solution obtained 
by annealing. Too slow a rate wastes computational time, 
while too fast a cooling rate quenches the system. The op- 
timal cooling rate is hard to determine, although there have 
been schedules in the literature [9] using dynamically deter- 
mined temperature decrements. Typically, the temperature 

3there may be more than one item with this size 
4for the equilibrium condition to be satisfied 

is decremented according to a logarithmic scheme [7]. The 
idea is that  in the absence of a good guideline, our best bet 
is to ensure that  the average cost decreases smoothly. 

We will use a temperature decrement function of the form 
.T(T) = 3' T where 7 lies in the interval [0.9, 1.0). In our 
simulation experiments good solutions were obtained with a 
7 value of about 0.95. 

Simulation Resul ts  

We have applied our algorithm to the bin-packing problem 
and have run extensive simulation experiments. In this sec- 
tion, we present a representative cross section of our results. 

D e n s i t y  o f  S t a t e s  

The density of states is a graph of the number of configu- 
rations plotted against their energy ranges. We obtain this 
data before the annealing process by accepting every new 
generated state (infinite temperature assumption) for a fixed 
number of iterations and counting the number of states with 
their energies in a particular interval. A graph of the density 
of states curve is shown in figure 2. 

A n n e a l i n g  C u r v e s  

In analyzing annealing schedules, it is useful to examine the 
graph of the average energy (at a fixed temperature) at var- 
ious temperatures during the afinealing experiment. This 
graph of < C(T)  > vs. T is called an annealing curve 
and contains important  information about the experiment. 
'Good '  annealing curves are marked by well defined regions 
corresponding to the high, intermediate, and low tempera- 
ture ranges. Annealing curves, representative of the experi- 
ments conducted, appear in figure 3. 

C o m p a r i s o n  S t u d i e s  

Several heuristic methods have been used to solve the bin- 
packing problem. We have chosen four candidate heuristic 
methods (based on their simplicity) and compared their per- 
formance with that of the annealing Mgorithm. The four 
well-known methods we tested were 

1. L P F :  a t tempts  to pack the Largest Piece First; from 
a priority queue built out of a sorted (nonincre~ing) 
item list, the next item is allocated to the bin with 
the least total allocation so far 

2. S P F :  identical to LPF except that  the item list is 
sorted in nondecreasing order 

3. F F I :  a t tempts  to pack the next item on the sorted 
(nondecreasing) item list into the first bin in which it 
will fit 

4. F F D :  identical to FFI except that  the item list is 
sorted in nonincreasing order 

The following figures summarize the results of the simulation 
experiment involving 1000 items and bins varying in num- 
ber from 10 till 300. In all the experiments, the stochastic 
method yielded a solution that  was at least as good as, and 
in most cases much better than, the solution obtained by 
applying the other methods. 

Figures 4 and 5 show the tables pertaining to the experi- 
ment involving item sizes generated randomly according to 
a uniform and the normal probability distribution respec- 
tively. The blank cells in rows 6 through 12 indicate that  
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the values for the corresponding techniques were too large 
to warrant inclusion in the table. 

Figures 6 and 7 show a graphical comparison between the 
results obtained by the best heuristic method and that ob- 
tained by our method• It is worth noting that, while the 
heuristic method has an erratic behavior, our method per- 
forms consistently well as the number of bins in the simula- 
tion experiment increases. 

Concluding Remarks 

We have 15resented an efficient annealing schedule for the so- 
lution of a variant of the classical bin-packing problem. The 
stochastic method yields solutions that are, in almost all 
cases, much better than heuristic methods for bin-packing. 
The solutions obtained by the stochastic method are seldom 
worse than one of the heuristic methods• Further, the solu- 
tions obtained with the stochastic method are stable, which 
means that the quality of the solution is consistently good 
unlike solutions obtained by heuristic methods whose per- 
formance tends to be problem-instance-dependent and con- 
sequently, erratic. 

Possible future extensions to this work include dynamic ther- 
mal equilibrium detection and parallel annealing techniques. 
Another area for future work could be the exploration of 
more efficient move generation methods to counteract the 
low acceptance ratio of generated states in the low temper- 
ature regime. 
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Figure 1: Stochastic Algorithm :for Bin-Packing 
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Figure 3: Annealing Curves 

NAb 

~ m ~ m m  

Previous Results 
Bins LPE. I SPF I FFI I FFD ANNEAL 

10 2.4 8114 8810 2.4 2.4 
20 312 16563 26055 3.2 3.2 
40 9.6 32068 32187 21.6 9.6 
60 19.7 49126 55696 49.7 13,7 
80 62.8 63107 63739 80.8 14.8 
i00 361.0 -- -- 95.0 29'.0 
120 77.9 -- -- 181.9 25.9 
140 964.1 -- -- 66.1 • 36,1 
160 326.4 ..... --- -- 282.4 34.4 
180 673,9 -- -- 193.9 47.9 
200 4967.5 -- -- 101.5 47.5 
300 10654.3 -- -- 354.3 86.3 

Figure 4: Performance Comparison (Uniform) 
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Figure 5: Performance Comparison (Normal) 
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